Retrieval Techniques for Contextual Learning
نویسندگان
چکیده
Following constructivist models of contextual learning, knowledge acquisition goes beyond mere absorption of isolated facts, and, instead is enabled, stimulated and supported by related existing knowledge and experiences. In this paper, we discuss a range of query expansion and result list reranking techniques aiming to preserve contextual dependencies among retrieved documents and, thereby, enhancing the performance of learning-centric search engines. Our empirical evaluation is based on a snapshot of Wikipedia and suggests significantly increased usability during an interactive user study.
منابع مشابه
Applying Learning to Rank Techniques to Contextual Suggestions
The Text Retrieval Conference’s Contextual Suggestion Track investigates search techniques for complex information needs that are highly dependent on a context and user interests. The goal of the track is to evaluate systems that provide suggestions for activities to users in a specific location, taking into account their historical personal preferences. In this paper, we present our approach f...
متن کاملNEW CRITERIA FOR RULE SELECTION IN FUZZY LEARNING CLASSIFIER SYSTEMS
Designing an effective criterion for selecting the best rule is a major problem in theprocess of implementing Fuzzy Learning Classifier (FLC) systems. Conventionally confidenceand support or combined measures of these are used as criteria for fuzzy rule evaluation. In thispaper new entities namely precision and recall from the field of Information Retrieval (IR)systems is adapted as alternative...
متن کاملImage Retrieval using Histogram Factorization and Contextual Similarity Learning
Image retrieval has been a top topic in the field of both computer vision and machine learning for a long time. Content based image retrieval, which tries to retrieve images from a database visually similar to a query image, has attracted much attention. Two most important issues of image retrieval are the representation and ranking of the images. Recently, bag-of-words based method has shown i...
متن کاملUniversity of Glasgow at TREC 2014: Experiments with Terrier in Contextual Suggestion, Temporal Summarisation and Web Tracks
In TREC 2014, we focus on tackling the challenges posed by the Contextual Suggestion and Temporal Summarisation tracks, as well as enhancing our existing technologies to tackle risk-sensitivity as part of the Web track, building upon our Terrier Information Retrieval Platform. In particular, for the Contextual Suggestion track, we propose a novel bundled venue retrieval approach and experiment ...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016